Nonlinear solitary waves with Gaussian tails

M. Kunze a,*, T. Küpper a, V.K. Mezentsev b, E.G. Shapiro b, S. Turitsyn b

a Mathematisches Institut der Universität Köln, Weyertal 86, D-50931 Köln, Germany
b Institute of Automation and Electrometry, 630090 Novosibirsk, Russia

Received 26 January 1998; received in revised form 19 October 1998; accepted 18 November 1998
Communicated by C.K.R.T. Jones

Abstract

We study analytically and numerically the stationary localized solutions of the nonlinear Schrödinger equation (NLSE) with an additional parabolic potential. Such a model occurs in a wide range of physical applications, including plasma physics and nonlinear optics. Bound states with Gaussian tails (these tails appear due to the parabolic linear potential) play an important role in the dynamics of the systems modelled by this equation. We prove the existence of the bound states and describe their properties. ©1999 Elsevier Science B.V. All rights reserved.

1. Introduction

In this paper we study the structure and properties of solitary waves with Gaussian tails in the NLS equation with an additional parabolic potential of trapping type. This nonlinear model occurs in different physical contexts and is of interest for practical applications. In plasma physics, this equation describes a pulse propagation in a preformed plasma channel (see e.g. [1,2] and the references therein). In this paper, we discuss some optical applications and put the main emphasis to mathematical aspects of the problem. It has been shown recently in [3] (see also [4,5]) that such a model describes a chirped quasi-soliton propagation along the transmission line with a special dispersion profile. One important application of the model considered is a soliton generation in actively and passively mode-locked erbium fibre lasers (see, e.g., [6–9] and the references therein). The interplay between dispersion, Kerr effect and phase modulation leads to a rich variety of features of generated pulses. At low peak pulse power, an actively mode-locked fibre laser system generates the Gaussian pulse, see [7,9]. While increasing the pulse power, the generating pulse approaches a sech (hyperbolic secant), because Kerr nonlinearity and dispersion are going to dominate. As a further practical application of the NLSE with additional parabolic potential, we want to mention here optical pulse propagation in transmission systems with in-line phase modulators. The use of in-line electro-optic phase modulators is known as a rather simple and effective way to control soliton transmissions, refer [10–12]. An advantage of this

* Corresponding author. E-mail: m kunze@mi.uni-koeln.de.

0167-2789/99/$ – see front matter ©1999 Elsevier Science B.V. All rights reserved.
PII: S 0 1 6 7 - 2 7 8 9 (9 8) / 0 0 2 9 7 - 8
control scheme is that no net gain has to be introduced into the transmission system to maintain the soliton power. Therefore, and in contrast to the amplitude modulation or the bandwidth filtering, this approach allows to avoid the introduction of an additional excess gain balancing average energy flow into the system. Moreover, drawbacks like the growth of the CW component and noise are eliminated. Solitons are stably guided at their temporal positions by the effective potential created due to phase modulation. Insertion of the modulators with properly designed filters results in a substantial suppression of the Gordon–Haus jitter.

It is desirable for an increase of the transmission capacity of a communication system to place carrier pulses as close to each other as possible. However, pulses cannot be placed too close because of mutual interaction. Interaction between two neighboring solitons is one of the major factors limiting transmission capacities of modern optical soliton-based communication systems. This interaction occurs due to an overlap of the exponential tails of the closely spaced fundamental solitons, leading to the reduction of the transmission rate. To provide a stable transmission, a separation between two neighboring fundamental solitons should be not less than at least five soliton widths. This is a fundamental limitation for a transmission based on the soliton with sech shape described by the NLS equation. One possible way to increase the transmission capacity is to use as an information carrier a solitary wave with tails decaying faster than the exponential tails of the NLSE soliton. This would result in a substantial suppression of the soliton interaction, and consequently, in the possibility of a more dense information packing. It has been shown in [11,12] that soliton interaction can be effectively suppressed by a periodic phase modulation. This effect can be interpreted in the following way. The periodic phase modulation imposes a perturbation such that a carrier pulse is no longer a NLSE soliton in this case. Tails of the carrier pulse are Gaussian due to the effective parabolic potential created by the modulation. As a matter of fact, the change of the properties of a carrier pulse by the transmission control elements (for instance, by the sliding filters) is rather well-known. Mathematically, the effect of filtering can be considered as formation of the autosoliton (solitary wave with parameters determined by the system parameters rather than by input pulse characteristics) with a chirp from the input pulse in form of the NLSE soliton. This change in the features of the carrier pulse can be used for further improvement of the transmission capacities of the soliton-based communication systems. Solitons with Gaussian tails have many attractive features and can occur in a wide range of physical and optical applications. Note that phase filtering in the general formulation of the problem leads to a sinusoidal linear potential instead of a parabolic one which approximates the general case for short pulses.

In this paper, we study systematically the structure and properties of a soliton with Gaussian tails in the general model described by the NLS equation with additional parabolic potential. An outline of the paper is as follows. In Section 2, the model equations are formulated and general integral properties are established. Section 3 is devoted to the study of the stationary solutions. The latter are found numerically. The existence of the stationary solutions is shown in Section 4, and their stability is treated in Section 5. Finally, our results are summarized in Section 6, and we added an appendix where some technical results are proved.

2. Basic equations

We start by discussing some general properties of the basic model

\[iQ_t + \frac{1}{2}Q_{xx} + |Q|^2 Q - ax^2 Q = 0. \]

Here \(Q = Q(x, t) \) is a function of \(x \in \mathbb{R} \) and \(t \geq 0 \), and \(a > 0 \) is a parameter. This Eq. (1) includes the most important effects, namely dispersion (or averaged dispersion), nonlinearity, and an effective parabolic potential which can result from different physical mechanisms, the introduction. Applications which lead to problems of type (1) are dealt with more thoroughly in Section 6 below.
Eq. (1) can be written in the Hamiltonian form

\[\frac{\partial Q}{\partial t} = -\frac{i}{\hbar} \frac{\delta H}{\delta Q}, \]

with Hamiltonian

\[H(Q) = \frac{1}{2} \int |Q_x|^2 \, dx - \frac{1}{2} \int |Q|^4 \, dx + a \int x^2 |Q|^2 \, dx. \]

The integral

\[E(Q) = \int |Q|^2 \, dx \]

is an additional conserved quantity, typically having the meaning of energy.

One can find some integral conditions on the characteristics of an input signal which provides that a maximum of the peak power will be bounded from below by a constant determined by the input signal parameters. First, using the inequality

\[\sqrt{a} E = -\sqrt{a} \int x(Q Q_x^* + Q^* Q_x) \, dx \leq \int |Q_x|^2 \, dx + a \int x^2 |Q|^2 \, dx, \]

we can estimate the Hamiltonian by

\[2H = \int |Q_x|^2 \, dx - \int |Q|^4 \, dx + 2a \int x^2 |Q|^2 \, dx \geq \sqrt{2a} E - \max |Q|^2 E. \]

Because \(H \) and \(E \) are conserved quantities, we hence can estimate the maximum of a pulse peak power at every \(t > 0 \) from below as

\[\max |Q|^2 \geq \sqrt{2a} - \frac{2H}{E}. \] (4)

Thus, if an input pulse satisfies the condition \(2H \leq \sqrt{2a} E \), then with pulse evolution, the maximal peak power cannot decrease below some constant value which can be estimated by the right-hand side of Eq. (4). This indicates that the energy cannot be dispersed among linear modes in a way that a peak power decreases below some constant value. The numerical computations have shown that the inequality \(2H \leq \sqrt{2a} E \) holds for the stationary solutions discussed in Sections 3 and 4. Hence, the lower bound in relation (4) is strictly positive for the stationary solutions and their basins of attraction.

Additional information about the pulse dynamics in Eq. (1) can be obtained by considering the evolution of the average square of the pulse width. Define \(R = \int x^2 |Q|^2 \, dx / \int |Q|^2 \, dx \) to be this average square of a pulse width. Then

\[\frac{d^2 R}{dt^2} = 2 \frac{H}{E} + 2 \frac{L_1}{E} - 6a R \geq 2 \frac{H}{E} + \frac{1}{2R} - 6a R = -\frac{\partial W}{\partial R}. \]

The latter representation allows to use the analogy with the motion of a particle in the effective potential \(W(R) = 3aR^2 - 2HR/E - \frac{1}{2} \ln(R) \). One observation that can be made from this analogy is that an average pulse width cannot reach either zero or infinity. Of course, this does not exclude compression of the central peak on the broadening background.
3. Stationary solutions: numerical results

In this section, we present numerical results about stationary solutions of Eq. (1), whereas in the next section we will give a strict analytical proof of the existence of the nonlinear bound states for (1).

We consider steady-state soliton solutions of Eq. (1) of the form

$$Q(x, t) = F(x) \exp(ikt).$$

The stationary solution $F = F(x)$ has to satisfy the nonlinear eigenvalue problem

$$kF = \frac{1}{4}F_{xx} + |F|^2 F - ax^2F$$

with boundary conditions $F(x) \to 0$ as $|x| \to \infty$. Note that Eq. (6) for a soliton shape has been derived in [13] by a variational approach in the context of optical pulse transmission for the system with strong dispersion management.

In contrast to the NLS equation, the nonlinear eigenvalue k can be negative. This can be seen from the fact that the linear limit of Eq. (6) recovers the linear eigenvalue problem for the quantum oscillator with negative (in our notation) equidistant eigenvalues $k_n = -k_s(n + 1/2)$, $n \in \mathbb{N}_0$, where $k_s = -\sqrt{a}/2$. The corresponding limits of the eigenfunctions are

$$F_n(a, k \to k_n, x) \cong e^{-\sqrt{a}/2x^2}H_n(x),$$

where $n \in \mathbb{N}_0$ enumerates the solutions, and $H_n(x)$ is the Hermite orthogonal polynomial of order n; see Eq. (12) below.

One can expect that in case $a > 0$ the shape of the ground state solution is an intermediate state between a sech-type profile of the NLSE soliton as $k \to \infty$ and the Gaussian pulse as $k \to k_s$. Indeed, if the nonlinear term in Eq. (6) dominates (i.e., $|F|^2 \gg a$), then the solitons are almost fundamental NLS solitons, because in the limit $a \to 0$ the solution is a soliton $F(x) = \sqrt{2k}/\cosh(\sqrt{2k}x)$ of the NLSE. In the opposite limit case $a \to \infty$, one has $k \to k_s$, and the solution is close to a Gaussian pulse $F(x) = \exp(-\sqrt{a}/2x^2)$. The latter also describes an asymptotic decrease of the function $F(x)$ for large x, because for the localized solutions the asymptotic behavior of the solution of Eq. (6) is dominated by its linear part. The next section is devoted to the rigorous proof of the existence of families of solutions to the nonlinear eigenvalue problem (6).

It is clear that the tails of the localized pulse with $a \neq 0$ decay much faster than the exponential wings of the fundamental soliton, when $a = 0$. As a consequence, solitons with Gaussian tails can be spaced much closer to each other, still suppressing interaction between neighboring pulses. Obviously, this allows a more dense packing of the information in optical applications.

Eq. (6) can be rewritten in a variational form $\delta(H + kE) = 0$. In particular, this means that any stationary solution of Eq. (1) realizes a critical point of H for a fixed E. This variational form can be used for the approximation of stationary solutions of Eq. (6) by trial functions.

In the context of this paper we only consider the practically relevant ground state solutions which correspond to the lowest eigenvalue in the linear limit. The boundary value problem (6) was solved numerically. In contrast to the NLSE limit, parameters k and a cannot be removed simultaneously from the equation by a simple scaling. Therefore, to describe the properties of such pulses, one has to study a whole family of the solutions depending on the two parameters k and a; in particular we obtain countably many families of bound states.

The soliton shapes for $a = 2$ and different values of k are shown in Fig. 1. It is seen that the soliton width is decreasing as a is decreasing, and the soliton shape changes from the almost Gaussian for $k = -0.99$ to the almost sech-like for $k = 10$. Note that solutions for other positive values of the parameter a can be found by a simple scaling transform as it is shown below. To illustrate an asymptotic behavior of the soliton tails, the soliton shapes
Fig. 1. Soliton shapes for \(a = 2 \) and different values of the parameter \(k \): \(k = 10 \) (solid line), \(k = 5 \) (dashed line), \(k = -0.5 \) (dash–dotted line), \(k = -0.99 \) (thin line).

are plotted in Fig.2 in logarithmic scale. A transition from Gaussian to exponential decay of the soliton tails can be observed there. Note that for large values of the parameter \(k \gg a \) there is an intermediate spatial scale \(x_e = \sqrt{k/a} \), which separates a region with exponential decay for \(x \ll x_e \) and the far region for \(x \gg x_e \), where Gaussian decay takes place.

Another illustration of the transition from Gaussian shape to the sech-like shape is shown in Fig. 3. The soliton energy \(E \) is plotted against the nonlinear eigenvalue \(k \). It is seen that energy is approaching to that corresponding to fundamental NLSE soliton as \(k \to +\infty \) for any value of the parameter \(a \). Indeed, the relative influence of the parabolic potential in Eq. (6) is reduced with the increasing of the eigenvalue \(k \) since the soliton width gets smaller and its amplitude becomes higher. Similarly, the Hamiltonian is plotted in Fig. 4 against \(k \) for different values of the parameter \(a \). Note that in the vicinity of \(k_e \) the Hamiltonian is positive in contrast to the pure NLS when \(a = 0 \).

4. Stationary solutions: analytical considerations

In this section, we turn to the analytical treatment of Eq. (6). We explain the functional analytic setting and the results obtained, whereas their detailed proofs have been postponed to the appendix to keep the paper readable, but nevertheless to make it self-contained.
To transform Eq. (6) to a standard bifurcation problem, we scale $F(x) = u(\gamma x)$ with $\gamma = (2a)^{1/4}$ to obtain

$$-u_{\xi\xi} + \xi^2 u - \sqrt{\frac{2}{a}} |u|^2 u = -\sqrt{\frac{2}{a}} ku, \quad (7)$$

where $\xi = \gamma x$. Writing again x for ξ, we find that Eq. (7) is a special case of equations in the general form

$$-u_{xx} + x^2 u + f(x, u) = \lambda u \quad \text{for} \quad x \in \mathbb{R}. \quad (8)$$

For this equation we suppose that

$$f : \mathbb{R}^2 \to \mathbb{R} \text{ is a Carathéodory function,}$$

$$|f(x, u)| \leq c(1 + |x|)|u|^\alpha, \quad x, u \in \mathbb{R}, \quad (9)$$

for some constants $c \geq 0$ and $\alpha > 1$. Here the assumption on f means that $f(x, \cdot)$ is continuous for $x \in \mathbb{R}$ and $f(\cdot, u)$ is measurable for $u \in \mathbb{R}$. Note also that, contrary to Eqs. (6) and (7), we consider real-valued nonlinearities, but this is only for simplicity.

We will also investigate Eq. (8) under the stronger condition

$$f(x, u) = c g(x, u), \quad g : \mathbb{R}^2 \to \mathbb{R} \text{ is locally Lipschitz continuous,}$$

$$|f(x, u) - f(x, \bar{u})| \leq c(1 + |x|)^\beta |u - \bar{u}||u|^\alpha - 1 + |\bar{u}|^{\alpha - 1}, \quad x, u, \bar{u} \in \mathbb{R}, \quad (10)$$

for constants $c \geq 0$, $\beta \in [0, 1]$ and $\alpha \geq 1 + 2\beta / 3$, and $\alpha > 1$, if $\beta = 0$. In particular the nonlinearities $f(u) = c|u|^\alpha - 1 u$ with $c \in \mathbb{R}$ and $\alpha > 1$ are admissible in both cases, hence our results will apply to Eq. (7) with $\lambda = -\sqrt{2/ak}$.

Fig. 2. Soliton shapes in logarithmic scale. Parameters are identical to those in Fig. 1.
4.1. Preliminaries on the linearized problem

We start by analyzing the linear problem corresponding to Eq. (8), i.e.,

\[-u_{xx} + (1 + x^2)u = \mu u,\] \hspace{1cm} (11)

where we shifted for later notational simplicity \(\lambda\) to \(\mu = 1 + \lambda\). The natural choice of state space in which Eqs. (8) and (11) will be considered is the finite-energy space

\[X = \{ u \in H^1 : \int x^2 u^2(x) \, dx < \infty \},\]

which is a Hilbert space with inner product

\[\langle u, v \rangle_X = \int (1 + x^2)u(x)v(x) \, dx + \int u'(x)v'(x) \, dx\]

and energy norm

\[|u|_X^2 = \int (1 + x^2)u^2(x) \, dx + \int u'(x)^2 \, dx.\]
Here, as usual, \(H^1 = H^1(\mathbb{R}) = W^{1,2}(\mathbb{R}) \). Note that a key property of \(X \) is that it is compactly embedded in \(L^2 = L^2(\mathbb{R}) \); see Lemma A.1.

Local bifurcation can only be expected at the eigenvalues of Eq. (11). Here, we have

Lemma 1. Let \(\mu_n = 2n + 2, n \in \mathbb{N}_0 \), and \(u_n(x) = e^{-x^2/2} H_n(x) \), where \(H_n \) is the \(n \)th Hermite polynomial

\[
H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}.
\]

Then the \(\mu_n \) are simple eigenvalues of Eq. (11) with corresponding eigenfunctions \(u_n \in X \). Every \(u_n \) has exactly \(n \) zeroes in \(\mathbb{R} \), and these zeroes are simple.

Proof. See [14, Ch. 5, Paragraph 15.1].

4.2. Global branches of nonlinear bound states

Since \(\lambda_n = 2n + 1, n \in \mathbb{N}_0 \), are the eigenvalues of the linearized equation corresponding to Eq. (8), we will prove that there are branches of solutions of the nonlinear equation which are bifurcating from these eigenvalues. Moreover, these branches are unbounded in \(\mathbb{R} \times X \).

To see this, it will be convenient to transform Eq. (8) to a standard bifurcation problem in \(L^2 \) by means of a Green’s function \(g : \mathbb{R}^2 \to \mathbb{R}^2 \) in order to apply the global bifurcation theorem of Rabinowitz [15, Thm. 1.3]. The appropriate ‘inverse’ integral operator \(A \) is

\[
(Av)(x) = \int g(x, \xi) v(\xi) \, d\xi \quad \text{for} \quad v \in L^2.
\]
It may be shown that $A : L^2 \to X$ is well-defined, linear, and continuous, and that $u = Au$ satisfies $u_{xx} = (1 + x^2)u - v$ in the distributional sense; see Lemma A.3 for more information. In particular, by Lemma 1, $A : L^2 \to L^2$ has exactly the characteristic values $\lambda_n, n \in \mathbb{N}_0$, and they are simple. Moreover, $A : X \subset L^2 \to X$ is compact, and $(Au, u)_X = (v, u)_{L^2}$ for $v \in L^2$ and $w \in X$; note that $u(x) \to 0$ as $|x| \to \infty$, see e.g. [16, Remark 5.4, p.73].

As a compact, selfadjoint, and nonnegative operator, $A : X \to X$ has a square root $A^{1/2}$ which continuously extends to $S : L^2 \to X$ with $S = A^{1/2}$ on X and $|Sv|_X = |v|_{L^2}$ for $v \in L^2$.

Then Eq. (8) transforms to
\[
v = \mu Av - Sf(\cdot, Sv)
\] (14)
in L^2, with the substitution $u = A^{1/2} v$. Let $Nv = Sf(\cdot, Sv)$ be the nonlinear part. Under assumption (9) we obtain that $N : L^2 \to X$ is continuous, and $\frac{|Nv|_2}{|v|_2} \to 0$ as $v \to 0$ in L^2. In particular, $N : L^2 \to L^2$ is compact with $\frac{|Nv|_2}{|v|_2} \to 0$ as $v \to 0$ in L^2; see Lemma A.5. Hence, all assumptions of the global bifurcation theorem of Rabinowitz are satisfied. The resulting global branches in the $(\mathbb{R} \times L^2)$-closure of the set of nontrivial solutions to Eq. (14) can be transformed back to global branches of solutions to Eq. (8) by means of the isometric homeomorphism
\[
\Phi : \mathbb{R} \times L^2 \to \mathbb{R} \times X, \quad \Phi(\mu, v) = (\mu - 1, Sv);
\] (15)
see Lemma A.7 for more details. Letting $\lambda_n = 2n + 1 = \mu_n - 1$ for $n \in \mathbb{N}_0$, we hence obtain the following result on the existence of bound states for Eq. (8), and thus in particular for Eqs. (6) and (7)), respectively. Here, S denotes the $(\mathbb{R} \times X)$-closure of the set of nontrivial weak solutions to Eq. (8).

Theorem 1. Let (9) be satisfied for f. For every $n \in \mathbb{N}_0$, let C_n denote the component of S with $(\lambda_n, 0) \in C_n$. Then the following alternative holds. Either
1. C_n is unbounded in $\mathbb{R} \times X$, or
2. C_n is compact, and there exists an $m \neq n$ such that $(\lambda_m, 0) \in C_n$.

Our next aim is to exclude possibility (ii) in the above theorem, under more restrictive assumptions on f. This will be obtained, as usual, by investigating nodal properties of u for $(\lambda, u) \in C_n$. Since the underlying interval \mathbb{R} is unbounded, a key point is to ensure that zeroes of functions u with (λ, u) lying in a bounded subset of $\mathbb{R} \times X$ cannot escape to infinity. This can be guaranteed through estimates based on the presence of the confining potential $V(x) = x^2$. From now on we assume that (10) holds for f.

Lemma 2. For all $R > 0$ there is a $d_R > 0$ such that $(\lambda, u) \in S, u \neq 0$, and $|\lambda| + |u|_X \leq R$ implies $u(x) = 0 \Rightarrow |x| \leq d_R$.

Proof. See the appendix.

Up to some technicalities (elaborated in the appendix), this is already enough to obtain the main result of this section.

Theorem 2. Let (10) hold for f. Then for every $n \in \mathbb{N}_0$ the component C_n of S with $(\lambda_n, 0) \in C_n$ is unbounded in $\mathbb{R} \times X$.

Proof. See the appendix.

Again, Theorem 2 particularly applies to Eq. (7) and hence to Eq. (6). We formulate the result as a separate theorem.
Theorem 3. For Eq. (6) we find countably many branches of bound states emanating off \(F = 0 \), namely at parameter values \((a, k)\) belonging to

\[
P_n = \left\{ (a, k) \in [0, \infty) \times [-\infty, 0] : -\sqrt{\frac{2}{a}} k = \lambda_n = 2n + 1 \right\}
\]

for some \(n \in \mathbb{N}_0 \). Each of the branches is unbounded in \((\lambda = -\sqrt{2/ak})\) -direction or in the norm of \(X\).

Remark 1. Instead of Eq. (8), more general problems

\[-u_{xx} + V(x) u + f(x, u) = \lambda u\]

could be treated in a similar way, under appropriate conditions on the potential \(V\). The essential conditions are \(V(x) \geq 0\) and \(V(x) \to \infty\) as \(|x| \to \infty\). In order to keep the presentation simple, we refrained from this generalization.

Remark 2. The case that \(V(x)\) is periodic will be pursued in a continuation to this paper, the situation being different inasmuch bands of continuous spectrum appear for the linearized equation.

4.3. On the local bifurcation behaviour

In this section we will derive an asymptotic formula for the bound states near the bifurcation points. The formula will then be useful in Section 5 when discussing the stability of the bound states, and it turns out to be in perfect agreement with the results obtained numerically.

The local solution branch of Eq. (8) emerging from \((\lambda_n, 0)\) is given by

\[
(\lambda(s), u(s)) = (\lambda_n + \mu(s), s[u_n + Sv(s)]), \quad s \in (-\gamma, \gamma),
\]

for some \(\gamma > 0\), with \((\mu_n + \mu(s), s[v_n + v(s)])\) being the local solution branch of Eq. (14), and \(Sv_n = u_n\), the \(n\)th eigenfunction. By local bifurcation theory, \(\mu(0) = 0\) and \(v(0) = 0\), hence \(u(s) \cong su_n\), and we have to calculate \(\mu'(0)\) and \(\mu''(0)\). For a fixed pair \((a, k)\) \(\in P_n\), see Eq. (16), the following formulas can be derived.

Lemma 3. We have \(\mu'(0) = 0\) and

\[
\mu''(0) = -4\sqrt{\frac{2}{a}} (n + 1) \frac{|u_n|_X^4}{|u_n|_{L^2}^4} =: -\eta_n < 0.
\]

Proof. See the appendix. \(\square\)

Consequently, \(\lambda(s) \cong \lambda_n - (\eta_n/2)s^2\). Hence in particular \(\lambda(s) \leq \lambda_n = -\sqrt{(2/a)k}\) around \(s = 0\), i.e., the bifurcation for Eq. (8) is subcritical, and also \(|s| \cong \sqrt{2(\lambda_n - \lambda(s))/\eta_n}\). Thus, eliminating \(s \geq 0\),

\[
u_s \cong su_n \cong \sqrt{\frac{2(\lambda_n - \lambda)}{\eta_n}} u_n
\]

locally for \(\lambda \leq \lambda_n\); whence we obtain for Eq. (6)

\[
F_s(x) = u_s(\gamma x) \cong \sqrt{\frac{2(\lambda_n - \lambda)}{\eta_n}} u_n(\gamma x), \quad \gamma = (2a)^{1/4}.
\]
Recall the rescaling at the beginning of Section 4. Therefore, we find for the energies $E_\lambda = \int_{\mathbb{R}} F_\lambda^2 \, dx$ that

$$
\frac{d}{d\lambda} E_\lambda \bigg|_{\lambda = \lambda_0} = -\left(\frac{a}{8} \right)^{1/4} \frac{|u_n|^2}{2(n+1)|u_n|^4_{L_4}}.
$$

As an example, we consider $n = 0$ and $a = 2$, hence forcing $k = -1$ to obtain $(a, k) \in P_0$, since $\lambda_0 = 1$. Then $u_0(x) = e^{-x^2/2}H_0(x) = e^{-x^2/2}$, $|u_0|^2_{L_2} = \sqrt{\pi}$, $|u_0|^4_{L_4} = \sqrt{\pi}/2$, and $|u_0|^4_{X^2} = \int_{\mathbb{R}} (1 + 2x^2)e^{-x^2} \, dx = 2\sqrt{\pi}$. Consequently,

$$
\frac{d}{d\lambda} E_\lambda \bigg|_{\lambda = \lambda_0} = -\sqrt{\pi} \approx -1.77.
$$

Hence, the local dependence of the energy E versus the nonlinear eigenvalue k in the vicinity of $k_* = -1$ is described by

$$
E(k) = \sqrt{\pi}(k + 1) + O((k + 1)^2);
$$

note again that k and λ have opposite signs. A straight line corresponding to the leading term in Eq. (19) is plotted in the inset in Fig. 3. It is seen that the numerically obtained dependence $E(k)$ for $a = 2$ shows at $k = k_* = -1$ exactly the same slope as is predicted by Eq. (19).

5. Stability of soliton solutions

In this section we will study the stability of a solitary pulse $Q_0(x, t) = F(x) \exp(ikt)$, see Eq. (5), with a ground state F. Writing $Q(x, t) = (F(x) + G(x, t)) \exp(ikt)$ and taking into account Eq. (6) for F, linearization of Eq. (1) in the soliton solution gives

$$
iG_t + \frac{1}{2}G_{xx} - kG + F^2(2G + G^*) - ax^2G = 0.
$$

Note that F is real and nonnegative. Decomposing $G = f + ig$ into real and imaginary part, we arrive at $f_t = L_- g$ and $g_t = -L_+ f$, with

$$
L_- = k - \frac{1}{2} \frac{\partial^2}{\partial x^2} - F^2 + ax^2 \quad \text{and} \quad L_+ = L_- - 2F^2 = k - \frac{1}{2} \frac{\partial^2}{\partial x^2} - 3F^2 + ax^2,
$$

and hence, $-f_t = L_- L_+ f$. Thus, the corresponding spectral problem is

$$
L_- L_+ f = \omega^2 f.
$$

Since Eq. (1) is a Hamiltonian system (2), and since the energy E from Eq. (3) is also a conserved quantity, a criterion for the stability of the pulse $Q_0(x, t)$ in terms of L_- and L_+ can be obtained directly from the general results in [17, Thm. 3]. As Eq. (1) is invariant under the group action $T(s)Q = e^{is}Q$, ‘stability’ here means ‘orbital stability’, i.e., stability of the group orbit; see the definition on p.167 of [17].

We treat Eq. (6) with a fixed $a > 0$ and let F_k denote the ground state of Eq. (6) for $k \geq k_0 := -\sqrt{a/2} \lambda_0 = -\sqrt{a/2}$, with k close to k_0, see Section 4.3. To investigate the stability of these ground states, we also need to introduce the real-valued

$$
d(k) = H(F_k) + kE(F_k).
$$
Exactly as in Example 6C [17, p. 188ff.], stability will be a consequence of [17, Thm. 3] (see also [18, Thm. 3.1]), provided the following points can be verified:

(P1) zero is not an eigenvalue of \(L_+ \);
(P2) \(L_+ \) has exactly one negative (simple) eigenvalue;
(P3) the kernel of \(L_- \) is spanned by \(F_k \);
(P4) \(d''(k) > 0 \);
(P5) \(\frac{d}{dk} E(F_k) > 0 \).

Here (P3) is readily obtained, since it is enough to observe that \(L_- F_k = 0 \) by Eq. (6), and that \(F_k \) is positive, hence, it is the first (simple) eigenfunction of the nonnegative operator \(L_- \). Moreover, (P1), (P4), and (P5) can be verified analytically only for \(k \) close to \(k_0 \), see also the discussion in [18, p. 212]. (P1) follows from a perturbation analysis of the spectrum, and (P5) is a consequence of the calculations in Section 4.3, see Eq. (19) for the special case \(a = 2 \). Then, to verify (P4) we can write, analogously to [17, (2.21)],

\[
\frac{d}{dk} (E(F_k), (d/dk) F_k) = 2 \int \left((d/dk) F_k \right) d x,
\]

and this has the sign of \(- \int F_k ((d/dk) F_k) d x = (1/\eta_n) \int \left| |u_n(y)\right|^2 d x > 0\), using Eq. (17).

Therefore, it remains to prove (P2). In the case without potential \((a = 0) \), one obtains \(L_+(dF_k/dx) = 0 \), i.e., \(dF_k/dx \) is an eigenfunction of \(L_+ \) with zero eigenvalue. Now, \(dF_k/dx \) vanishes at exactly one point, thus, zero has to be the second eigenvalue. For \(a > 0 \), however, \(L_-(dF_k/dx) = -2ax F_k \), and we have to stick to a different argument, similarly to Appendix A and B from [18], relying on a variational characterization of the ground states with \(k \) close to \(k_0 \). Since \((L_- u, u) = (L_+ u, u) + 2 \int F_k^2 u^2 d x \), it is impossible to have \((L_+ u, u) \geq 0 \) for all \(u \in X \), as \(L_- F_k = 0 \). Hence, \(L_+ \) must have at least one negative eigenvalue. To finally show that \(L_+ \) has at most one negative eigenvalue, consider the functional

\[
J^k[u] = \int \left((1/2)u_x^2 + ax^2 u^2 + ku^2 \right) d x, \quad 0 \neq u \in X, \quad \text{and} \quad I^k = \inf \{ J^k[u] : 0 \neq u \in X \}.
\]

Along the lines of [18, Thm. 2.2] we show the following.

Lemma 4. Let \(k > k_0 \). Then \(I^k > 0 \), and the infimum is realized by some function \(u_k \) which, after a multiplicative scaling to a function \(\tilde{F}_k \), solves Eq. (6). Moreover, \(\tilde{F}_k \rightarrow 0 \) in \(X \) as \(k \rightarrow k_0 \).

Proof. See the appendix.

Consequently, \(F_k = \tilde{F}_k \) for \(k \) close to \(k_0 \) implies \(\delta^2 J^k[F_k](u, u) \geq 0 \) for all \(u \in X \). But through a straightforward calculation it can be shown that \(L_+ u = \delta^2 J^k[F_k](u, u) + r_1(u) \), with a rank-one-operator \(r_1 \). Therefore, \(L_+ \) can have at most one negative eigenvalue.

Hence, (P1)–(P5) are satisfied close to \(k_0 \), and we can summarize our results on stability as follows.

Theorem 4. For \(a > 0 \) fixed, \(k \geq k_0 = -\sqrt{a/\pi} \), and \(k \) close to \(k_0 \), the ground states \(F_k \) of Eq. (6) are orbitally stable.

Another, more heuristic, evidence of the soliton stability can be obtained from the examination of the relation between the conserved quantities, based on the predictions of catastrophe theory (see e.g. the review [19]). Since the soliton solution corresponds to a critical point of the Hamiltonian \(H \) for a fixed energy \(E \), the existence of both stable and unstable solutions of nonlinear evolution equations is reflected in the occurrence of singularities of the Hamiltonian as a function of the energy. In turn, the absence of singularities means either stability or instability of the whole branch of solutions. Fig. 5 shows a plot of \(H(E) \) for numerically obtained soliton solutions. There is, however, no indication of any singularity seen. From this, one can make a conclusion about stability of these solutions, since in the limit of high energies \((E \rightarrow +\infty \) and \(H \rightarrow -\infty \) the soliton solutions correspond to the fundamental NLS solitons which are known to be stable.
6. Applications and Conclusions

In this section, we present an example of the occurrence of the basic equation Eq. (1) in a practical problem. Consider an average optical pulse propagation down the cascaded transmission system with inline phase modulators, described by the equation

\[\frac{1}{\beta_2} \frac{\partial E}{\partial Z} - \frac{\partial^2 E}{\partial T^2} + \eta \sigma |E|^2 E = \mp [v_0 - v_2 T^2] E. \]

(22)

Here, \(Z \) is the propagation distance measured in [km], \(T \) is the retarded time in [ps], \(|E|^2 = P \) is the optical power in [W], \(\beta_2 \) is the first order group velocity dispersion measured in [ps/km], and \(\sigma = (2\pi n_2)/(\lambda_0 A_{\text{eff}}) \) is a coefficient of the nonlinearity, with \(n_2 \) being the nonlinear refractive index, \(\lambda_0 = 1.55 \mu \text{m} \) the carrier wavelength, and \(A_{\text{eff}} \) the effective fiber area. Moreover, in Eq. (22), the enhancement factor (guiding-center factor) \(\eta \) is obtained through \(\eta = (G - 1)/(G \ln G) \) from the amplifier gain \(G \). We assume that amplifiers and modulators are spaced with the same period \(Z_a \). The terms on the right-hand side of Eq. (22) account for the average effect of the inline phase modulation. The transfer function of an electro–optical modulator is \(E_{\text{out}} = E_{\text{in}} \exp(i\Phi \cos \omega_m t) \), where \(\Phi \) is the peak phase excursion, \(\omega_m \) the angular drive frequency of the modulator, and, in Eq. (22), \(v_0 = \Phi/Z_a \) as well as \(v_2 = \Phi \omega_m^2/(2Z_a) \). The \(\mp \) signs correspond to the up-chirped and down-chirped positions, respectively, of the modulator cycle, see [10]. Eq. (22) has been obtained by averaging over one amplification (modulation) period. After trivial scaling, \(Z = Z_a t, T = \sqrt{\beta_2/a} Z_a/T \) and \(E(Z, T) = \)
\((\eta Z_a)^{-1/2} \exp (\mp i \eta Z_a) Q(x, t)\), the basic dimensionless model reads exactly as Eq. (1) for negative \(\beta_2\), which corresponds to an anomalous fiber dispersion. The parameter \(a = \pm \sqrt{\beta_2} Z_a^2\) can have both a negative or a positive sign, though we focused on the positive sign, because in that case the localized solitary waves considered in this paper are supported.

In conclusion, we investigate analytically and numerically the stationary localized solutions of the nonlinear Schrödinger equation (NLSE) with an additional parabolic potential. Such a model occurs in a wide range of physical applications, including plasma physics and nonlinear optics. Bound states with Gaussian tails (these tails appear due to the parabolic linear potential) play an important role in the dynamics of the systems modelled by this equation. Gaussian tails reduce substantially the soliton interaction, thus, allowing for a more dense information packing. Such pulses due to suppressed interaction can be very useful for ultra-high-bite rate optical data transmissions. We prove the existence and stability of the bound states and describe their properties.

Acknowledgements

The support of RFBR (Grant 96-02-19131-a) and VW-Stiftung (Grant I/71 824) is acknowledged.

Appendix A

In this appendix, we add some technical lemmas and the proofs of some results from Sections 4 and 5, which have been omitted there.

Lemma A.1. The embedding \(X \subset L^2\) is compact, and \(X \subset L^2\) is dense. Moreover,

\[
|u(x)| \leq \sqrt{2}|u|_{H^1} \leq \sqrt{2}|u|_X \text{ in } \mathbb{R} \text{ for } u \in X.
\]

Proof. Fix \(u \in X\). For \(h \in [0, 1]\) and \(R > 1\) we have

\[
|u(\cdot + h) - u|_{L^2}^2 = \int_{-R}^{R} |u(x + h) - u(x)|^2 \, dx + \int_{|x| > R} |u(x + h) - u(x)|^2 \, dx \\
\leq \int_{-R}^{R} \left(\int_{x}^{x+h} u'(t) \, dt \right)^2 \, dx + 4 \int_{|x| > R-1} u^2(x) \, dx \\
\leq \int_{-R}^{R} h \left(\int_{x}^{x+h} u'(t)^2 \, dt \right) \, dx + \frac{4}{(R-1)^2} \int_{x}^{x+h} u^2(x) \, dx \\
\leq \left[2Rh + \frac{4}{(R-1)^2} \right] |u|_X^2
\]

as well as

\[
|u|_{L^2([-\infty, -R], L^2)}^2 = \int_{|x| > R} u^2(x) \, dx \leq \frac{1}{R^2} |u|_X^2.
\]

This shows that for every \(M > 0\) we have \(\sup_{|u|_X \leq M} |u(\cdot + h) - u|_{L^2} \to 0\) as \(|h| \to 0\) as well as \(\sup_{|u|_X \leq M} |u|_{L^2([-\infty, -R], L^2)} \to 0\) as \(R \to \infty\). Hence, by the Fréchet–Kolmogorov theorem, see [20, Section X.1], the compactness of the embedding \(X \subset L^2\) follows. The density of \(X \subset L^2\) is immediate, and concerning Eq. (A.1)
we can use [16, Prop. 5.3, p. 73] with $\varepsilon = 1$, $p = p' = 2$, $b \to \infty$, and $a \to -\infty$ to find $|u(x)| \leq |u|_{L^2} + |u'|_{L^2}$, and hence, the claim. □

Recall that we let

$$(Av)(x) = \int g(x, \xi) v(\xi) \, d\xi \quad \text{for} \quad v \in L^2,$$

see Eq. (13), where the explicit form of the Green’s function is

$$g(x, \xi) = \frac{1}{\sqrt{\pi}} e^{(x^2+\xi^2)/2} \left(\int_{-\infty}^{\xi} e^{-y^2} \, dy \right) \left(\int_{\xi}^{\infty} e^{-y^2} \, dy \right), \quad \xi \leq x,$$

$$g(x, \xi) = \frac{1}{\sqrt{\pi}} e^{(x^2+\xi^2)/2} \left(\int_{-\infty}^{x} e^{-y^2} \, dy \right) \left(\int_{\xi}^{\infty} e^{-y^2} \, dy \right), \quad x \leq \xi,$$

(A.2)

see [14, Ch. 5, Paragraph 15.1].

We first need an auxiliary lemma.

Lemma A.2. There exists a constant $c > 0$ such that for $x \in [0, \infty]$ and $k = 0, 1, 2$

$$e^x \int_{x}^{\infty} e^{-y^2} \, dy \leq \frac{c}{(1+x)^{k+1}} \quad \text{and} \quad e^{-x^2} \int_{-x}^{x} e^{y^2} \, dy \leq \frac{c}{1+x}.$$

Proof. The first estimate follows from $(1+y)^k \geq (1+x)^k$ and from substituting $s = x(y-x)$ in $\int_{x}^{\infty} e^{s^2-y^2} \, dy$, whereas for the second one, we note that via $s = x^2 - y^2$,

$$\int_{x}^{\infty} e^{s^2-y^2} \, dy = \frac{1}{2} \left[\int_{0}^{x^2/2} e^{-s} \, ds + \int_{x^2/2}^{\infty} e^{-s} \, ds \right]$$

$$\leq \frac{1}{2} \left[\frac{\sqrt{2}}{x} \int_{0}^{x^2/2} e^{-s} \, ds + e^{-x^2/2} \int_{x^2/2}^{\infty} \frac{ds}{\sqrt{x^2-s}} \right] \leq c \left[\frac{1}{x} + xe^{-x^2/2} \right],$$

and this gives the claim. □

Lemma A.3. For $v \in L^2$ let $u = Av$. Then u is well-defined, $u \in C^1(\mathbb{R})$, and there is a constant $c > 0$ independent of v such that

$$|u(x)| \leq c \frac{|v|_{L^2}}{(1 + |x|)^{3/2}} \quad \text{and} \quad |u'(x)| \leq c \frac{|v|_{L^2}}{(1 + |x|)^{1/2}} \quad \text{for} \quad x \in \mathbb{R},$$

(A.3)

In particular $u(x) \to 0$ and $u'(x) \to 0$ as $|x| \to \infty$. Additionally, $u'' = (1 + x^2)u - v$ holds in the distributional sense, and $A : L^2 \to X$ is well-defined, linear, and continuous. If $v \in L^2 \cap C(\mathbb{R})$, then $u \in C^2(\mathbb{R})$ with $u'' = (1 + x^2)u - v$ in \mathbb{R}.

Proof. By Lemma A.2 and Hölder’s inequality for $x \in [0, \infty[$
\[|u(x)| \leq \left(\int_{-\infty}^{-x} + \int_{-x}^{x} + \int_{x}^{\infty} \right) g(x, \xi) |u(\xi)| \, d\xi \]

\[\leq ce^{x^2/2} \left(\int_{-\infty}^{0} e^{-y^2} \, dy \right) \left(\int_{0}^{x} e^{-y^2} \, dy \right) \left(\int_{-x}^{0} e^{-y^2} \, dy \right) \left(\int_{x}^{\infty} e^{-y^2} \, dy \right) |u(\xi)| \, d\xi \]

\[\quad + ce^{x^2/2} \int_{-\infty}^{\infty} e^{\xi^2/2} \left(\int_{-\infty}^{0} e^{-y^2} \, dy \right) |u(\xi)| \, d\xi \]

\[\leq e^{-x^2/2} \frac{1}{1+x} \left[\int_{-\infty}^{0} e^{\xi^2/2} \left(\int_{-\infty}^{0} e^{-y^2} \, dy \right) |v(\xi)| \, d\xi \right] + e^{-x^2/2} \int_{0}^{x} e^{\xi^2/2} \left(\int_{-\infty}^{0} e^{-y^2} \, dy \right) |v(\xi)| \, d\xi \]

\[\leq e^{-x^2/2} \frac{1}{1+x} \left[1 + \left(\int_{-\infty}^{0} e^{\xi^2} \, d\xi \right) \right] |v|_{L^2} + e^{-x^2/2} \left(\frac{1}{1+x} \right) |v|_{L^2} \]

\[\leq e \frac{|v|_{L^2}}{(1+x)^{3/2}}, \]

and since it may be argued analogously for \(x \in (-\infty, 0] \), we have shown the first part of Eq. (A.3). Hence, in particular \(u \in L^2 \). As in the case of a finite interval it is seen that \(u \in C^1(\mathbb{R}) \) with

\[(Av)'(x) = u'(x) = \int \partial_x g(x, \xi) v(\xi) \, d\xi. \]

(A.4)

Because of

\[\partial_x g(x, \xi) = \frac{1}{\sqrt{\pi}} e^{(x^2+\xi^2)/2} \left(\int_{-\infty}^{\xi} e^{-y^2} \, dy \right) \left(\int_{x}^{\infty} e^{-y^2} \, dy \right), \quad \xi < x, \]

\[\partial_x g(x, \xi) = \frac{1}{\sqrt{\pi}} e^{(x^2+\xi^2)/2} \left(\int_{-\infty}^{0} e^{-y^2} \, dy \right) \left(\int_{0}^{x} e^{-y^2} \, dy \right) + \left(\int_{x}^{\infty} e^{-y^2} \, dy \right), \quad x < \xi, \]

we clearly obtain \(|u'(x)| \leq c(1+|x|)|u(x)| \), and hence,

\[|u'(x)| \leq ce^{1/2}. \]

Since \(\lim_{\xi \to x} - \partial_x g(x, \xi) - \partial_x g(x, \xi) = -1 \) and \(\partial_x^2 g(x, \xi) = (1+x^2)g(x, \xi) \) for \(x \neq \xi \), it follows by direct calculation that \(u'' = (1+x^2)u - v \) in the distributional sense. Moreover, as \(u \in C^1(\mathbb{R}) \), this relation can be multiplied by \(u \) and integrated by parts to yield for every \(R > 0 \),

\[u' (-R) u(R) - u'(R) u(R) + \int_{-R}^{R} (1+x^2)u^2(x) \, dx + \int_{-R}^{R} u'(x)^2 \, dx \]

\[= \int_{-R}^{R} v(x) u(x) \, dx \leq |v|_{L^2} |u|_{L^2}. \]

(A.5)

Thus by Eq. (A.3), as \(R \to \infty \), we get \(|u|^2_{X} \leq |v|_{L^2} |u|_{L^2} \), and this proves \(u \in X \) and \(|u|_{X} \leq |v|_{L^2} \), i.e., \(A : L^2 \to X \) is continuous. Since the last claim is straightforward, the proof of Lemma A.3 is finished. \(\square \)
To transfer Eq. (8) from X to a nonlinear eigenvalue problem in L^2, we needed the squareroot $A^{1/2} : X \rightarrow X$ of A and its extension $S : L^2 \rightarrow X$. Additionally, we obtain
\[|A^{1/2}v|^2 = (Av, v)_X = |v|_{L^2}^2 \quad \text{and} \quad A^{1/2}(Av) = A(A^{1/2}v), \quad v \in X, \] (A.6)
and hence, by approximation,
\[S^2v = A^{1/2}(Sv) = Av \quad \text{and} \quad S(Av) = A^{1/2}(Av) = A(Sv), \quad v \in L^2. \] (A.7)

In Section 4, we had to see that the nonlinearity $Nv = Sf(\cdot, Sv)$ is compact and of higher order in L^2. We start with a lemma about the Nemytskii operator generated by f.

Lemma A.4. Let (9) hold for f, and define $F : X \rightarrow L^2$, $(Fu)(x) = f(x, u(x))$. Then $|Fu|_{L^2} \leq c|u|_X^\alpha$ for $u \in X$, and F is continuous. If (10) is satisfied by f, then in addition
\[\forall \ R > 0 \ \exists \ c_R > 0 : \ |u|_X \leq R, |\tilde{u}|_X \leq R \ \Rightarrow \ |Fu - F\tilde{u}|_{L^2} \leq c_R|u - \tilde{u}|_X. \] (A.8)

Proof. For $u, \tilde{u} \in X$ it follows from (9) and (A.1) that
\[|Fu - F\tilde{u}|_{L^2}^2 = \int |f(x, u(x)) - f(x, \tilde{u}(x))|^2 \, dx \] (A.9)
\[\leq 2 \ \int \left[|f(x, u(x))|^2 + |f(x, \tilde{u}(x))|^2 \right] \, dx \]
\[\leq c \ \int (1 + |x|)^2 |u(x)|^{2\alpha} + |\tilde{u}(x)|^{2\alpha} \, dx \]
\[\leq c|u|_X^{2\alpha - 2} \ \int (1 + |x|)^2 u^2(x) \, dx + c|\tilde{u}|_X^{2\alpha - 2} \ \int (1 + |x|)^2 (\tilde{u})^2(x) \, dx, \]
to obtain
\[|Fu - F\tilde{u}|_{L^2}^2 \leq c|u|_X^{2\alpha} + |\tilde{u}|_X^{2\alpha}. \] (A.10)
Because of $f(x, 0) = 0$ for $x \in \mathbb{R}$, we have $F(0) = 0$. Thus, taking $\tilde{u} = 0$, we obtain in particular that $Fu \in L^2$ and $|Fu|_{L^2} \leq c|u|_X^\alpha$. Moreover, Eq. (A.10) also implies that $F : X \rightarrow L^2$ is continuous, since $u_n \rightarrow u$ in X yields w.l.o.g. $u_n(x) \rightarrow u(x)$ a.e. as $n \rightarrow \infty$. By assumption on f thus $f(x, u_n(x)) \rightarrow f(x, u(x))$ a.e. Hence, Lebesgue’s (generalized) dominated convergence theorem applies to Eq. (A.9) with $\tilde{u} = u_n$.

Finally, if (10) holds, then analogously to Eq. (A.10), since, $(1 + |x|)^{2\beta} \leq (1 + |x|)^2$,
\[|Fu - F\tilde{u}|_{L^2}^2 \leq c|u|_X^{2(\alpha - 1)} + |\tilde{u}|_X^{2(\alpha - 1)} \ \int (1 + |x|)^2 |u(x) - \tilde{u}(x)|^2 \, dx, \]
so that we obtain Eq. (A.8). \[\square \]

Next, we show that the nonlinearity is of higher order in L^2.

Lemma A.5. Let (9) be satisfied by f, and define $N : L^2 \rightarrow X$, $Nv = (S \circ F \circ S)(v)$ for $v \in L^2$. Then N is continuous, and $|Nv|_{L^2} \rightarrow 0$ as $v \rightarrow 0$ in L^2. In particular, $N : L^2 \rightarrow L^2$ is compact with $|Nv|_{L^2} \rightarrow 0$ as $v \rightarrow 0$ in L^2.

Proof. By Lemma A.4, $N : L^2 \rightarrow X$ is well-defined and continuous. Moreover, for $v \in L^2$
\[|Nv|_X = |S(F Sv)|_X = |F(Sv)|_{L^2} \leq c|Sv|_X^\alpha = c|v|_{L^2}^\alpha, \]
and since $\alpha > 1$, this gives the claimed estimates. \[\square \]
To give some more details concerning the global branches of solutions to Eqs. (8) and (14), let
\[\Sigma_0 = \{(\mu, v) \in \mathbb{R} \times L^2 : v \neq 0, v = \mu Av - Nv\} \]
denote the set of nontrivial solutions of Eq. (14), and \(\Sigma = \overline{\Sigma_0 \times L^2} \) its closure. We can use the global bifurcation theorem of Rabinowitz, see [15, Thm. 1.3], [21, Thm. 15.C] and [22, Cor. 29.1], in \(L^2 \) to obtain the following lemma.

Lemma A.6. Assume (9) for \(f \). For every \(n \in \mathbb{N}_0 \), let \(\Gamma_n \) denote the component of \(\Sigma \) with \((\mu_n, 0) = (2n+2, 0) \in \Gamma_n \). Then, the following alternative holds. Either
1. \(\Gamma_n \) is unbounded in \(\mathbb{R} \times L^2 \), or
2. \(\Gamma_n \) is compact, and there exists an \(m \neq n \) such that \((\mu_m, 0) \in \Gamma_n \).

This can be transferred back to Eq. (8) as follows. Let
\[\mathcal{S}_0 = \{\lambda, u\} \in \mathbb{R} \times X : u \neq 0 \text{ is a weak solution of } -u_{xx} + x^2 u + f(x, u) = \lambda u \]
denote the corresponding solution set, and let \(\mathcal{S} = \overline{\mathcal{S}_0 \times X} \). Define \(\Phi : \mathbb{R} \times L^2 \to \mathbb{R} \times X \), \(\Phi(\mu, v) = (\mu - 1, Sv) \), see Eq. (15). Then
\[|\Phi(\mu, v) - \Phi(\tilde{\mu}, \tilde{v})|_{\mathbb{R} \times X} = |(\mu - \tilde{\mu}, v - \tilde{v})|_{\mathbb{R} \times L^2} \text{ for } (\mu, v), (\tilde{\mu}, \tilde{v}) \in \mathbb{R} \times L^2. \]

Lemma A.7. \(\Phi(\Sigma) = \mathcal{S} \), i.e., \(\Phi : \Sigma \to \mathcal{S} \) is an isometric homeomorphism.

Proof. If \((\mu, v) \in \Sigma_0 \), then \(v \neq 0 \) and \(v = \mu Av - Nv \), hence, \((\lambda, u) = \Phi(\mu, v) \) has \(u \neq 0 \). Moreover, \(A(L^2) \subset X \) and \(N(L^2) \subset X \) imply \(v \in X \), and thus by Eqs. (A.6) and (A.7),
\[u = Sv = A^{1/2}v = \mu A^{1/2}(Av) - A^{1/2}(S[Fu]) = \mu A^{1/2}(v) - A(Fu) = A(\mu u - Fu). \]
Since \(\mu u - Fu \in L^2 \), it follows from Lemma A.3 that \(u'' = (1 + x^2)u - [\mu u - Fu] \) in the distributional sense, i.e., \(u \) is a weak solution of \(-u'' + x^2 u + f(x, u) = \lambda u \). Consequently, we have shown \(\Phi(\Sigma_0) \subset \mathcal{S}_0 \), and therefore \(\Phi(\Sigma) \subset \mathcal{S} \) by continuity of \(\Phi \).

Conversely, if \((\lambda, u) \in \mathcal{S}_0 \), then \(\mu u - Fu \in L^2 \) by Lemma A.4, with \(\mu = \lambda + 1 \). Hence, by Lemma A.3 and Eq. (A.7)
\[u = A(\mu u - Fu) = Sv, \quad \text{where} \quad v = S(\mu u - Fu) \in X. \quad (A.11) \]
Moreover, by Eq. (A.7),
\[v = \mu Su - SFu = \mu S^2v - SF Sv = \mu Av - Nv, \]
and thus \(\mathcal{S}_0 \subset \Phi(\Sigma_0) \). Since \(\Phi \) is isometric, also \(\mathcal{S} \subset \Phi(\Sigma) \).

We also need to carry out the following proof.

Proof of Lemma 2. Let \((\lambda, u) \in \mathcal{S}, u \neq 0 \), and \(u(x_0) = 0 \) for some \(x_0, \) w.l.o.g. \(x_0 \in [0, \infty] \). Since, \(u(x) \to 0 \) as \(x \to \infty \), there must be \(x_1 > x_0 \) with \(u'(x_1) = 0 \). Then, \(u(x_1) \neq 0 \) by Lemma A.9, and we may assume that \(u'(x_1) > 0 \), since in case that \(u(x_1) < 0 \), the same argument applies with \(\tilde{u} = -u, \tilde{f}(x, u) = -f(x, -u) \), and \(\tilde{g}(x, u) = g(x, -u) \). Note that \(\tilde{f} \) may be estimated in the same way as \(f \), see (10).

Case 1. If \(u''(x_1) > 0 \), then \(u''(x_2) = 0 \) for a first \(x_2 > x_1 \), because \(u''(x) \to 0 \) as \(x \to \infty \) by Eq.(A.3). Hence, \(u''(x) > 0 \) in \([x_1, x_2]\) particularly yields \(u(x_2) \geq u(x_1) > 0 \). It follows from Lemma A.8 that
\[x_0^2 u(x_2) \leq x_2^2 u(x_2) = \lambda u(x_2) + u''(x_2) - f(x_2, u(x_2)) \leq |\lambda| + |g(x_2, u(x_2))|u(x_2). \]
Taking \(\tilde{u} = 0 \) in (10) yields \(|g(x, u)| \leq c(1 + x)^{\beta}|u|^\alpha - 1 \) for \((x, u) \in [0, \infty[\times \mathbb{R}\) and thus by Eq. (A.3), for
\[x_0^2 \leq R + c(1 + x_2)^{\beta}|u(x_2)|^{\alpha - 1} \leq R + c(1 + x_2)^{\beta} \frac{|(\lambda + 1)u - Fu|_{L^2}^{\alpha - 1}}{(1 + x_2)^{(\alpha - 1)/2}} \leq d_R, \]
the latter because \(\beta - 3(\alpha - 1)/2 \leq 0 \) and \(|u|_{L^2} \leq |u|_X \) as well as \(|Fu|_{L^2} \leq c|u|_X^\alpha\), refer Lemma A.4.

Case 2. If \(u''(x_1) \leq 0 \), then
\[x_0^2u(x_1) \leq x_1^2u(x_1) = \lambda u(x_1) + u''(x_1) - f(x_1, u(x_1)) \leq |[\lambda] + |g(x_1, u(x_1))]|u(x_1), \]
so that the same argument as in Case 1 applies. \(\Box \)

Next, we will proceed to the proof of Theorem 2. For this, we start with some auxiliary results.

Lemma A.8. If \((\lambda, u) \in \mathcal{S}\), then \(u = A[(\lambda + 1)u - Fu] \) for \((\lambda, u) \in \mathcal{S}_0\), and this carries over to \(\mathcal{S} \) by approximation. Thus, \(u \in C^4(\mathbb{R}) \) by Lemma A.3, and hence \((\lambda + 1)u - Fu \in L^2 \cap C(\mathbb{R})\), because \(f : \mathbb{R}^2 \to \mathbb{R} \) is continuous.

This in turn implies, again by Lemma A.3, that \(u \in C^2(\mathbb{R}) \) with \(-u'' + x^2u + f(x, u) = \lambda u \) for \(x \in \mathbb{R}\). Concerning the second claim, first note that
\[|u(x) - \tilde{u}(x)| \leq \sqrt{2}|u - \tilde{u}|_X, \quad x \in \mathbb{R}, \quad (A.13) \]
by Eq. (A.1). Moreover, with \(v = (\lambda + 1)u - Fu \) and \(\tilde{v} = (\tilde{\lambda} + 1)\tilde{u} - F\tilde{u} \), by Eqs. (A.3),(A.4) and (A.8), for \(x \in \mathbb{R}\)
\[|u''(x) - \tilde{u}''(x)| = |(Av)'(x) - (A\tilde{u})'(x)| = |(A[u - \tilde{u}])'(x)| \leq c|v - \tilde{v}|_{L^2} \leq c||u|_{L^2}[|\lambda - \tilde{\lambda}| + |\lambda| + |\tilde{\lambda}|] + |u - \tilde{u}|_{L^2} + |Fu - F\tilde{u}|_{L^2} \leq c_R[|\lambda - \tilde{\lambda}| + |u - \tilde{u}|_X]. \]
Taking into account Eq. (A.13) we have shown (A.12). \(\Box \)

Lemma A.9. Let \((\lambda, u) \in \mathcal{S}\). If \(x_0 \in \mathbb{R} \) with \(u(x_0) = u'(x_0) = 0 \), then \(u = 0 \). Moreover, if \(u \neq 0 \), then \(u \) can have only finitely many zeroes in every interval \([-d, d]\), \(d > 0 \), and each zero is simple.

Proof. The first claim follows from the unique solvability of \(-u'' + x^2u + f(x, u) = \lambda u, u(x_0) = u'(x_0) = 0\), see (10) and Lemma A.8. Thus, every zero of \(u \neq 0 \) must be simple. In addition, if there would be infinitely many different zeroes \(x_n \) in some \([-d, d]\), then w.l.o.g. \(x_n \to x_0 \) for some \(x_0 \in [-d, d] \) with \(u(x_0) = 0 \). If e.g. \(x_n > x_0 \), then \(u'(y_n) = 0 \) for some \(y_n \in [x_0, x_n] \), and thus also \(u'(x_0) = 0 \), a contradiction to \(u \neq 0 \). \(\Box \)

Thus, as an immediate consequence of Eq. (A.12) in Lemma A.8 we obtain the following corollary, where for \((\lambda, u) \in \mathcal{S}\) with \(u \neq 0 \) and \(d > 0 \) we denote by \(N((\lambda, u); d) \) the finite number of simple zeroes of \(u \) in \([-d, d]\).

Corollary A.1. For \(n \in \mathbb{N}_0 \) and \(d > 0 \) define
\[Z_n^d = \{ (\lambda, u) \in \mathcal{S} : N((\lambda, u); d) = n \}. \]
Then \(Z_n^d \subset \mathcal{S} \) is open.
Next, for $R \geq 3$ define the finite
\[d_R^0 = \max\{|x| : x \in \mathbb{R} \text{ is a zero of an eigenfunction } u_n \text{ for some } n \in \mathbb{N}_0 \text{ with } \lambda_n \leq R \}, \] (A.14)
with $\lambda_n = \mu_n - 1 = 2n + 1$, $n \in \mathbb{N}_0$, and u_n from Lemma 1. Note that $u_0(x) = e^{-x^2/2}$ has no zeroes.

Lemma A.10. For $R > 0$ and $n \in \mathbb{N}_0$ with $\lambda_n \leq R$ there is $\delta > 0$ such that $(\lambda, u) \in S$, $u \neq 0$, and $|\lambda - \lambda_n| + |u|_X \leq \delta$ implies $N((\lambda, u); d_{R+1} + d_R^0 + 1) = n$, where d_{R+1} is from Lemma 2 with $R + 1$.

Proof. If the claim were wrong, then there would be $(\lambda_j, u_j) \in S$ with $\lambda_j \to \lambda_n$ in \mathbb{R} and $0 \neq u_j \to 0$ in X as $j \to \infty$ such that $N^{(j)} = N((\lambda_j, u_j); d_{R+1} + d_R^0 + 1) \neq n$ for all $j \in \mathbb{N}$. Let $w_j = u_j'/|u_j'|_{L^2} \in X \subset L^2$, with $v_j = S(u_j'/|u_j'|_{L^2} - F u_j'/|u_j'|_{L^2}) \in X$, where $\lambda_j = \lambda_j^1 + 1 \to \lambda_n + 1$ as $j \to \infty$. These w_j are well-defined since by Eq. (A.11) we have $w_j = Su_j$, and hence $0 \neq |u_j|_X = |Su_j|_X = |v_j|_{L^2}$. Moreover, $w_j = u_j'/|u_j'|_{L^2} - (Nu_j'/|u_j'|_{L^2})$ refer the proof of Lemma A.7. According to Lemma A.5, we have $(Nu_j'/|u_j'|_{L^2}) \to 0$ in L^2 as $j \to \infty$. Since $|w_j|_{L^2} = 1$ and $A : L^2 \to L^2$ is compact, thus w.l.o.g. $w_j \to w$ in L^2 as $j \to \infty$, with $w = (\lambda_n + 1)Aw = \mu_n Aw \in X$.

Define $u = Sw \in X$. Then, $|u|_X = |Su|_X = |w|_{L^2} = 1$ and $u = \mu_n Au$ by Eq. (A.7), therefore, $u = \alpha u_n$ for some $\alpha \neq 0$ by Lemma 1. In particular, $u \in C^2(\mathbb{R})$, u has exactly n zeroes in \mathbb{R}, they are all simple, and also $|x| \leq d_R^0$ for these zeroes x of u by definition of d_R^0, see Eq. (A.14). Additionally, $u_j'/|u_j'|_{X} = (Su_j'/|u_j'|_{L^2})/|u_j'|_{L^2} = Sw = u$ in X as $j \to \infty$ by continuity of $S : L^2 \to X$.

We claim that $|u_j'/|u_j'|_{X} - w_{C^1(\mathbb{R})}| \to 0$ as $j \to \infty$. This can be shown similar to Eq. (A.12) in Lemma A.8, since $u = Az$ with $z = \mu_n u$ and $u_j'/|u_j'|_{X} = Az_j$ with $z_j = (\lambda_j + 1)u_j'/|u_j'|_{X} - (F u_j'/|u_j'|_{X})$ by Lemma A.8, and because also, by Lemma A.4,
\[
|z_j - v_j|_{L^2} \leq |\lambda_j^1 + 1 - \mu_n|/|u_j'|_{L^2} + |u_j|_{X} + \mu_n|u_j|_{X} - u_{L^2} + |F u_j|_{L^2}/|u_j'|_{X} \\
\leq |\lambda_j + 1 - \mu_n| + |u_j|_{X} - u_{L^2} + |c|/|u_j'|_{X} \to 0 \quad \text{as} \quad j \to \infty.
\]
Consequently, $|u_j'/|u_j'|_{X} - w_{C^1(\mathbb{R})}| \to 0$ as $j \to \infty$, and this in turn implies that $u_j'/|u_j'|_{X}$ also has exactly n simple zeroes, and all these zeroes are in $\{x \in \mathbb{R} : |x| \leq d_{R+1} + d_R^0 + 1\}$ for large j, see Lemma 2 and Corollary A.1. Thus, $N^{(j)} = n$ for large j, a contradiction. \square

Now, we are in a position to give the proof of Theorem 2.

Proof of Theorem 2. Suppose on the contrary that alternative (ii) of Theorem 1 is satisfied. Then, in particular $C_n \subset \overline{B}_R^S : = \{ (\lambda, u) \in S : |\lambda| + |u|_X \leq R \}$ for some $R > 0$ sufficiently large. We choose d_R with the property stated in Lemma 2, and w.l.o.g. we may assume that $d_{R+1} \geq d_R$. Then
\[
C_n \subset \overline{B}_R^S = \overline{B}_R^S \cap \bigcup_{j=0}^{\infty} \mathcal{Z}_{d_{R+1}+1}^j \cup \{ (\lambda_j, 0) : \lambda_j \leq R \} \tag{A.15}
\]
with $\mathcal{Z}_{d_{R+1}+1}$ from Corollary A.1. Indeed, if $(\lambda, u) \in \overline{B}_R^S \subset S$ and $u \neq 0$, then $|\lambda| \leq R$ and $\lambda = \lambda_j$ for some $j \in \mathbb{N}_0$. On the other hand, if $u \neq 0$, then by Lemma 2 all zeroes of u are in $\{x \in \mathbb{R} : |x| \leq d_{R}\}$, there are only $j \in \mathbb{N}_0$ (i.e., finitely many) of these zeroes, and all are simple, by Lemma A.9. In particular, $u(\pm[d_{R+1} + 1]) \neq 0$ and $N((\lambda, u); d_{R+1} + 1) = j$, hence, $(\lambda, u) \in \mathcal{Z}_{d_{R+1}+1}$ by definition. This establishes Eq. (A.15).

Define $\tilde{N} : \overline{B}_R^S \to \mathbb{N}_0$ through $\tilde{N}(\lambda, u) = N((\lambda, u); d_{R+1} + d_R^0 + 1)$ for $u \neq 0$, and $\tilde{N}(\lambda, 0) = j$ for $j \in \mathbb{N}_0$ such that $\lambda_j \leq R$, where d_R^0 is from Eq. (A.14). We claim that \tilde{N} is locally (w.r.t. the S-topology) constant on
\[\overline{B}_{R} \). In fact, if \((\lambda, j, 0) \in \overline{B}_{R} \) with \(\lambda_j \leq R \), then in an \(S\)-neighborhood \(\tilde{N}(\lambda, u) = j = \tilde{N}(\lambda, 0) \) by Lemma A.10. Note that \((\lambda, u) \in S \) sufficiently close to \((\lambda, j, 0) \) with \(u = 0 \) must already have \(\lambda = \lambda_j \). On the other hand, if \((\lambda, u) \in \overline{B}_{R} \cap Z^{d_{R+1}+1} \) for some \(j \in \mathbb{N}_0 \), then \(u \neq 0 \), and by Corollary A.1 there is \(\delta > 0 \) such that \((\tilde{\lambda}, \tilde{u}) \in S \) with \(|\tilde{\lambda} - \lambda| + |\tilde{u} - u|_X \leq \delta \) implies \((\tilde{\lambda}, \tilde{u}) \in Z^{d_{R+1}+1} \), and thus \(N((\tilde{\lambda}, \tilde{u}); d_{R+1}+1) = \tilde{N}(\lambda, u); d_{R+1}+1 \) by definition.

But \(\delta \leq 1 \) yields \(|\tilde{\lambda}| + |\tilde{u}|_X \leq \delta + |\lambda| + |u|_X \leq 1 + R \), and therefore the zeroes of both \(u \) and \(\tilde{u} \) are contained in \(\{x \in \mathbb{R} : |x| \leq d_{R+1}\} \), by Lemma 2. Consequently for small \(\delta > 0 \) and \((\lambda, \tilde{u}) \in S \) with \(|\tilde{\lambda} - \lambda| + |\tilde{u} - u|_X \leq \delta \)

\[\begin{align*}
\tilde{N}(\lambda, u) &= N((\tilde{\lambda}, \tilde{u}); d_{R+1}+1) = N((\tilde{\lambda}, \tilde{u}); d_{R+1}+1) = N((\lambda, u); d_{R+1}+1) \\
&= N((\lambda, u); d_{R+1}+1) = \tilde{N}(\lambda, u).
\end{align*} \]

Therefore, \(\tilde{N} \) is locally constant on \(\overline{B}_{R} \), and thus also on the compact connected \(C_n \subset S \), see Eq. (A.15) and assumption (ii) of Theorem 1. This in turn implies that \(\tilde{N} \) is constant on \(C_n \), and since by assumption \((\lambda_m, 0) \in C_n \) for some \(m \neq n \), we obtain the contradiction \(m = \tilde{N}(\lambda, 0) = \tilde{N}(\lambda, 0) = n \). \(\square \)

Next we give some details for the proof of Lemma 3.

Proof of Lemma 3. We first consider the general problem Eq. (8) under assumption Eq. (10) on \(f \), and we additionally suppose that \(F : X \to L^2 \) is \(C^3 \) with \(\delta F(0) = 0, \delta^2 F(0) = 0, \) but \(\delta^3 F(0) \neq 0 \), where \(F \) is from Lemma A.4. These assumptions will hold if \(f \) is a cubic nonlinearity, as is the case for Eq. (6) and (7).

Let, \(v_n = \mu_n S u_n \in X \) with \(u_n \) from Lemma 1. Then

\[S v_n = \mu_n S^2 u_n = \mu_n A u_n = u_n \quad \text{and} \quad \mu_n A v_n = \mu_n^2 A(S u_n) = \mu_n^2 S(A u_n) = \mu_n u_n = v_n \]

by Eq. (A.7) and Lemma 1. Hence, in particular the one-dimensional nullspace of \(I - \mu_n A \) in \(L^2 \) is generated by \(v_n \). Since, the algebraic multiplicity of \(\mu_n \) for \(A \) is one, a standard local bifurcation theorem (see, e.g., [22, Thm. 28.3]) can be applied to yield a \(\gamma > 0 \) and \(C^2 \)-functions \(\mu : (-\gamma, \gamma) \to \mathbb{R} \) and \(v : (-\gamma, \gamma) \to (\mathbb{R} v_n)^2 \) such that \(\mu(0) = 0, v(0) = 0 \), and \(G(\mu_n + \mu(s); s[v_n + v(s)]) = 0 \) for \(s \in (-\gamma, \gamma) \), with \(G(\mu, v) = v - \mu A v - N v - v - \mu A v - (S F S)(v) \), see Eq. (14) and Lemma A.5. As \(\delta^2 F(0) = 0 \), we obtain \(\mu'(0) = 0 \), see [22, p. 385] and the arguments to follow. Since \(S \) is linear, \(\delta N(0) = 0 \) and \(\delta^2 N(0) = 0 \) by assumption, and \(\delta^3 N(v)(w_1, w_2, w_3) = S \delta^3 F(Sv)(Sw_1, Sw_2, Sw_3) \) as a three-form on \(L^2 \). Thus,

\[\delta^3 N(0)[v_n]^3 = S \delta^3 F(0)[S v_n]^3 = S \delta^3 F(0)[u_n]^3. \]

Let

\[P_U = \frac{(v_n, v)}{|v_n|^2} \]

denote the orthogonal projection onto \(\mathbb{R} v_n \) in \(L^2 \). By differentiating \(G(\mu_n + \mu(s); s[v_n + v(s)]) = 0 \) w.r.t. \(s \) and projection onto \(\mathbb{R} v_n \) one finds

\[\mu''(0)v_n = \frac{1}{3} \mu_n P \delta^3 N(0)[v_n]^3 = \frac{1}{3} \mu_n \frac{(v_n, S \delta^3 F(0)[u_n]^3)_L^2}{|v_n|^2} v_n, \]

and therefore

\[\mu''(0) = \frac{1}{3} \mu_n \frac{(v_n, S \delta^3 F(0)[u_n]^3)_L^2}{|v_n|^2}. \]
Next, recall S is selfadjoint in L^2 and $Sv_n = u_n$. Moreover, $|u_n|^2 = |Su_n| = |u_n|$ and hence,
\[
\mu''(0) = \frac{1}{2} \mu_n \frac{(u_n, \delta^3 F(0)[u_n]^3)_{L^2}}{|u_n|^{4}_{X}} \quad \text{with} \quad \mu_n = 2n + 2.
\]

Now we specialize this to (the real-valued analogue of) Eq. (7), i.e., we take $f(x, u) = -\sqrt{2/\pi}u^3$, and we fix $(a, k) \in P_n$, see Eq. (16). Since, the Nemytskii operator $Fu = f(\cdot, u(\cdot))$ has $\delta^3 F(0)[u_n]^3 = -6\sqrt{2/\alpha}u_n^3$, we obtain the claim. \[\square\]

Finally, we turn to the variational characterization of the ground states and give, following [18, Thm. 2.2], the proof of Lemma 4.

Proof of Lemma 4. For notational simplicity, we consider the case $a = 2$ and transform Eq. (6) again to Eq. (7), and also $\lambda = -\sqrt{2/\alpha}k = -k$ with $k > k_0$ to $\mu = 1 + \lambda$ with $\mu < \mu_0 = 2$. Thus, the non-linear equation is
\[
-u_{xx} + (1 + x^2)u - |u|^2u = \mu u,
\]
with corresponding functional
\[
J^{\mu}[u] = \frac{|u|^2}{|u|^2} - \frac{\mu |u|^2}{L^2}, \quad 0 \neq u \in X, \quad \text{and} \quad I^\mu = \inf \{J^{\mu}[u] : 0 \neq u \in X\}.
\]

Observe first that $|u|^2_X \geq \mu_0 |u|^2_{L^2}$, as μ_0 is the smallest eigenvalue. Consider a minimizing sequence $J^{\mu}[u_n] \to I^\mu$ with $|u_n|_{L^2}^2 = 1$. Let $\delta_0 = 1 - \mu/\mu_0 > 0$ to obtain with $F^{\mu}[u] = |u|^2_X - \mu |u|^2_{L^2}$ the estimate $|u|^2_X = F^{\mu}[u] + (1 - \delta_0)\mu_0 |u|^2_{L^2} \leq F^{\mu}[u] + (1 - \delta_0)|u|^2_X$. Hence, $(u_n) \subset X$ is bounded, and due to Lemma A.1, w.l.o.g. $u_n \to u_\infty$ strongly in L^2 and weakly in X for some $u_\infty \in X$. By the Gagliardo–Nirenberg estimates [23, Thm. I.9.3], $|u|^2_{L^4} \leq C|u|^3_{X}^{1/4} |u|^1_{L^2}$, therefore, also $u_n \to u_\infty$ strongly in L^4. Thus, u_∞ is a minimizer, $J^{\mu}[u_\infty] = I^\mu$. As $\delta J^{\mu}[u_\infty] = 0$, it follows that the scaled $\bar{u}_{\infty} = \sqrt{\alpha_{\infty}}u_\infty$ is a solution to Eq. (1.16) with $J^{\mu}[\bar{u}_{\infty}] = I^\mu$, where $\alpha_{\infty} = F^{\mu}[u_\infty]$. We now indicate the dependence on μ by writing $\bar{u}_{\infty} = \bar{u}_{\infty}^{\mu}$ to show $\bar{u}_{\infty}^{\mu} \to 0$ in X as $\mu \to \mu_0$. The proof that $\bar{u}_{\infty}^{\mu} \to 0$ in L^2 runs exactly as in Appendix A of [18]. Let u_0 be the eigenfunction of Eq. (11) for μ_0. Then, $I^\mu \leq J^{\mu}[u_0] = (\mu - \mu_0) |u_0|^2_{L^2} |u_0|^2 = C(\mu - \mu_0)$. Consequently, $|\bar{u}_{\infty}^{\mu}|^2_X = \mu |\bar{u}_{\infty}^{\mu}|^2_{L^2} + |\bar{u}_{\infty}^{\mu}|^2_{L^4} I^\mu \leq \mu_0 |\bar{u}_{\infty}^{\mu}|^2_{L^2} + C(\mu_0 - \mu) \to 0$ as $\mu \to \mu_0$, thus $\bar{u}_{\infty}^{\mu} \to 0$ in X. \[\square\]

References